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An implicit-in-time method for granular materials is described. The method
combines the material point method, a first-order contact algorithm, and a Newton–
Krylov equation solver to give improved energy conservation, stabilization of
the finite-grid-instability, and the correct description of collisions between grains.
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1. INTRODUCTION

Granular material is a common yet interesting and complex form of matter that has
engaged the attention of a wide range of disciplines [26]. Physicists and mathematicians
are fascinated by simple experiments, such as sand piles, which reveal new phenomena,
such as self-organized criticality and stress-bridging, where large fluctuations are a striking
feature [23, 24]. Engineers seek to extend continuum mechanics to granular flow to provide
practical descriptions of industrial processes, for example, to predict discharge rates from
hoppers [10].

Numerical models have been helpful in dealing with the complexities of granular flow
and have revealed some of the underlying physics. Among the wide variety of models
that have been used are the q model, with which the statistics of force fluctuations in
bead packs under static loading are studied [21], and a simple frustrated, Ising lattice gas
model [22], which yields a force distribution similar to the q model. Contact dynamics’
simulations assume that the individual grains are perfectly rigid and interact through exact
Coulombian friction, which introduces a nonlocal character to momentum transfers that
requires that all kinematic constraints be simultaneously accounted for in the solution of
the dynamics [40]. Other models include Monte Carlo models [25], cellular automata [2],
and granular dynamics’ simulations using the distinct element method (DEM) [3]. The
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force law for interactions among grains in DEM may take various forms, including a hard
core potential [29], or a contact law derived from Hertz–Mindlin theory [16]. Finally, there
are methods which seek to model the material properties of the grains realistically [38, 44,
45]. These models resolve grain scale lengths, allow grains to deform, and solve continuum
equations in which contact and friction have been regularized.

Grain scale models include realistic constitutive models for the individual grains and
describe grain deformation under load. There are Eulerian [45] and Lagrangean [38] models,
which differ in the way they treat interactions between grains. In the Eulerian models, grain
interactions are treated using a mixture theory in which continuity of either strain or stress
is assumed [46]. In Lagrangean models, as in the material point method (MPM) based on
the particle-in-cell method (PIC), grain interactions are modeled by a contact algorithm.
In MPM, regularization is provided by shape functions, which are associated with each
particle and provide interpolation of grid data.

MPM combines a Lagrangean description, using material points, with an Eulerian grid.
The material points resolve edges, support a multiple valued velocity so that sliding can be
modeled, eliminate the numerical diffusion that would ordinarily occur as a grain moves,
and allow history-dependent effects such as plastic strain to be recorded. The Eulerian grid
supports efficient computation of interactions among the material points. Contacts between
grains are computed with a model based on the immersed boundary method [15], which
forbids interpenetration, but which allows grains to separate, to slide past one another, and
to bond [38].

MPM has been used to study the complex behavior of granular samples with realis-
tic material properties under applied compression and shear. Under compression [39],
static loading results in stress bridging in polydisperse samples, and dynamic loading re-
sults in a two-wave structure with stress fingering propagating ahead of a normal com-
paction wave. In polydisperse samples with a stiff viscoelastic binder, stress fingering is
suppressed. Under shear [37], inclined columns of highly stressed particles form, dissi-
pate, and re-form with increasing strain, similarly to experimental observations [19] and
theoretical studies [16]. Sheared samples exhibit very large stress fluctuations, with an
exponential probability distribution for stresses above the mean as reported by Liu et al.
and Radjai et al. [4, 21], but limited by the plastic yield stress of the material being
modeled. There is a interest in introducing even more realistic material properties into
MPM, especially to model damage due to brittle fracture at high strain rates or large
strains.

Here, an implicit formulation of the material point method is considered [1, 8, 32].
Previous versions of MPM advance the solution in time by means of a leapfrog algorithm.
These work well for relatively high strain rates. However, for quasi-static granular problems
implicit methods are potentially more efficient [12]. A robust and efficient MPM has many
applications in the study of the response of granular materials to low strain rates, such
as experiments on nonlinear stiffening [13] or shear cell experiments [19]. An important
byproduct of the implicit formulation is the elimination of aliasing instabilities and a more
faithful representation of the physics. This is confirmed by the analysis and numerical
experiments in this paper.

The solution of the implicit MPM model presents some special challenges. Some of these
come from the physics of the model, which incorporates a model for contact among grains
with friction. The standard Coulomb friction model includes discontinuities that require
unconventional mathematics to describe them [40]. Other challenges are a consequence of
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the material point description of the material, in which important data is distributed among
a very large number of particles.

A Newton–Krylov (NK) algorithm is applied to the solution of the implicit MPM model
[41]. In the past decade, Newton–Krylov methods have been applied to a wide variety of
challenging problems; see, for example, [53, 54, 59]. A primary advantage of the Newton–
Krylov implementation is that it can be matrix-free [42]; the matrix is required only in the
form of a matrix–vector product. The application of the solver is therefore straightforward. It
is easy to incorporate into the solution of large systems of nonlinear equations, and it requires
only the evaluation of the remaining residual error in the solution at each iterative step. In
practice, however, preconditioning the linear problem is essential for the overall efficiency
of the algorithm and the choice of preconditioner must be tailored to the requirements
of each application. A notable trend in the literature is the use of multigrid methods as
preconditioners [43]. Our experience with a multigrid preconditioner is reported.

In the following sections, the granular flow model is reviewed, the implicit formulation
of MPM is described and the linear and nonlinear stability of the implicit MPM method
is analyzed. Next, the application of the Newton–Krylov technique is described, which
encompasses the evaluation of the nonlinear residual and preconditioning. The results of
numerical experiments for a single grain, an assembly of grains under compression, and a
monodisperse assembly of grains that is subjected to large shear deformation are presented
and discussed.

2. A MODEL FOR GRANULAR MATERIAL WITH DEFORMABLE GRAINS

Granular material is modeled as a collection of deformable grains [38]. The dynamics
of each grain, g, are described by the standard equations of continuum mechanics, which
include mass continuity, stress and strain evolution, and momentum equations,

dρg

dt
= −ρg∇ · vg, (1)

dσg

dt
= Tg :

deg

dt
, (2)

deg

dt
= 1

2

(∇vg + ∇vT
g

)
. (3)

ρg
dvg

dt
= ∇ · σg +

∑
g′

ρgfgg′ , (4)

where ρg is the density, vg is the velocity, σg is the stress, Tg is the tangent modulus, eg is
the strain, and fgg′ is the specific contact force exerted on grain g by grain g′.

The grains are modeled as isotropic, linearly elastic-plastic materials, and the strain is
decomposed into elastic and plastic parts,

e = ee + epl . (5)

As is described in detail in Sulsky et al. [8], for computational convenience the plastic
strain is computed using a radial return rule, or normal to the yield surface in stress space
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for isotropic materials,

depl

dt
= dλ

dt

σg

|σg| . (6)

The parameter, λ, is monotone increasing and is calculated to satisfy a consistency condition
which requires that the stress equal the current yield stress, |σg| = |σyield|, as computed from
a strain hardening model.

When the grains are held together by a binder, the binder is modeled as viscoplastic
material [36, 39].

In the absence of friction or bonding, the contact force prevents interpenetration of grains
but allows them to move apart freely. When contact between two or more grains occurs,
interpenetration will not occur if the velocity for each grain at the point of contact, xc,
satisfies the inequality,

n̂g · (vg − vg′) ≤ 0, (7)

where n̂g is the outward directed surface normal for grain g. In general, this is a very
expensive constraint to satisfy, because the computational effort scales as the square of the
number of grains. A constraint whose cost scales as the number of grains is derived by
multiplying Eq. (7) by ρg′ and summing over g′,

n̂g · (vg − v) ≤ 0, (8)

where v is the Fabre-averaged velocity at the point of contact,

v =
∑

g ρgvg∑
g ρg

. (9)

The constraints given by Eqs. (7) and (8) are equivalent when two grains are in contact. We
will assume no more than two grains are in contact at any given time and replace fg,g′ by
fg =∑g′ fg,g′ . The summation includes all grains in contact at xc. Imposed strain boundary
conditions are imposed through the contact force by specifying v on the boundary.

It is assumed that the unit normals for grains in contact satisfy

n̂g · n̂g′ = −1, g �= g′. (10)

It is required that

ρgfgg′ + ρg′ fg′g = 0 (11)

for any g and g′, so that momentum is conserved. More complex contact forces include
friction and bonding. Coulomb friction adds a component to fg , in the plane formed by the
relative velocity and the surface normal that acts to resist sliding at the point of contact.
Bonding prevents all relative motion. Debonding occurs if the normal traction exceeds the
bond strength, σbond,

n̂g · σg · n̂g ≥ σbond (12)

and Eq. (7) is satisfied.
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3. AN IMPLICIT MPM METHOD FOR GRANULAR FLOW

The material point method is a particle-in-cell method with many of the similarities to
the fluid-implicit-particle method (FLIP) [35]. Like FLIP, MPM combines two meshes, one
a material or Lagrangean mesh defined by a distribution of mass or material points, the
other a logically rectangular computation grid, which covers the computational domain. On
these two grids, the equations of motion are integrated in two phases. In the first phase, the
dynamical equations are solved in Lagrangean form with both the material and computation
grids moving with the local fluid velocity. In the second phase, a new computation grid is
defined, and the particles, which are stationary in this phase, are relocated on the new grid.
The advantages of a dual material-point/computation-grid representation are the Galilean
invariance of the numerical equations, the absence of numerical diffusion, the interface
tracking afforded by the material points, and the ease with which history-dependent materials
can be modeled.

There are also significant differences between FLIP and MPM as well. In FLIP, the
particle data is interpolated to the computation grid using particle shape functions, then
differentiated. In MPM, the particle shape functions are differentiated, then the derivatives
are used to interpolate particle data to the computation grid [8]. FLIP’s approach requires
that the conjugacy relations needed for conservation be provided by operators on the grid
[6] and allows considerable freedom in choosing smooth interpolation formulae for some
variables and not for others. MPM’s approach requires a consistent choice for all interpo-
lation formulae, because the conjugacy relations must be satisfied by the derivatives of the
particle shape functions [8]. (Further information on this issue can be found in Birdsall
and Langdon [9, pp. 213–232].) Since consistency is most easily satisfied using low-order
b-splines, MPM typically uses linear b-splines.

The most pertinent difference between MPM and FLIP for the present discussion is that
FLIP and its progeny have all used time-implicit difference equations, while MPM uses
an explicit leapfrog algorithm. In this section, we review MPM and outline an implicit
formulation. Our discussion focuses on the first or Lagrangean phase, during which the grid
and particle variables are updated.

3.1. Defining the Solution Space of MPM

In MPM, the material data is carried on Lagrangean mass points or particles. To each mass
point p, there is assigned essential information, such as the position, xp, mass, m p, velocity,
vp, stress σp, and volume, Vp. The material points move through a logically rectangular
grid of dimension d , whose vertices are located at xi . Each cell of the rectangular grid is
mapped onto a unit square or cube, ξ l ∈ [0, 1], l = 1 . . . d. The mapping we choose is a
bilinear (trilinear) mapping using b-splines, s, of linear order. The mapping is invariant as
the computation grid moves with the flow,

ds(ξ)

dt
= 0, (13)

and maps cell edges on the logically rectangular grid onto cell edges on the logical grid.
The b-splines are positive functions with bounded support. For interpolation in more than
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one variable, a tensor product of b-splines is used,

s(ξ) =
d∏

l=1

s(ξ l). (14)

At the beginning of the first phase of each time step, the logical coordinates, ξ l are defined
within each cell by the mapping between physical and logical coordinates,

x(ξ) =
∑

j

x j s(ξ − ξ j ). (15)

Because ds/dt = 0 in the first phase, the velocity, the acceleration, and the specific contact
force are interpolated from the grid by

vg(ξ) =
∑

j

vg j s(ξ − ξ j ), (16)

dv(ξ)

dt
=
∑

j

dv j

dt
s(ξ − ξ j ). (17)

f(ξ) =
∑

j

f j s(ξ − ξ j ). (18)

The rate of strain experienced by each mass point is calculated by differentiating the velocity,

dep

dt
= 1

2

∑
i

[∇pi vi + (∇pi vi )
T ], (19)

where ∇pi gives the value of the derivative of nodal data at the particle,

∇pi =
d∑

α=1

∇ξα ∂

∂ξα
s
(
ξα − ξα

i

)∣∣
ξα=ξα

p
. (20)

The mass density, ρ(x), and stress are given by

ρ(x) =
∑

p

m pδ(x − xp), (21)

σ(x) =
∑

p

σpVpδ(x − xp), (22)

where

δ(x − xp) ≡
d∏

l=1

δ
(
xl

i − xl
p

)
. (23)

3.2. Spatial Differencing with MPM

A formulation of MPM in weak form is given in [8], but we will follow the development
given in Burgess et al. [48] to derive an approximation for spatial derivatives. We begin by
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calculating the integral of the inner product of the velocity and the momentum equation,
Eq. (4),

∫
D

v ·
[
ρ

dv
dt

− ∇ · σ − ρf
]

d3x . (24)

The first term in the integral can be written, using Eqs. (16), (17), and (21), and integrating

d K

dt
=
∑
i, j

mi j vi · dv j

dt
, (25)

mi j =
∑

p

m ps(ξi − ξp)s(ξ j − ξp). (26)

Since the mass matrix, mi j , is a positive, symmetric matrix, the kinetic energy in Eq. (25)
is positive.

Following [48], the node velocity is computed from the particle momenta by inverting
the mass matrix, ∑

j

mi j v j =
∑

p

m pvps(ξi − ξp). (27)

If one compares the kinetic energy, K , with the mass-point kinetic energy,

k =
∑

p

1

2
m pv2

p, (28)

it is easily shown that K ≤ k. However, d K/dt = dk/dt , as is easily verified from Eqs. (17)
and (27).

The material stress in Eq. (24) becomes∫
D

d3x ′v · ∇ · σ =
∫

D
d3x ′∑

i

vi s(ξ
′ − ξi ) · ∇x ′ ·

∑
p

σpVpδ(x′ − xp). (29)

The integral appearing in this equation,∫
D

d3x ′s(ξ ′ − ξi )∇x ′δ(x′ − xp) = ∇xξ
α|x=x p

∂

∂ξα
s
(
ξα − ξα

i

)∣∣
ξα=ξα

p
= −∇pi , (30)

gives the value of the derivative of a particle variable at a grid node. The minus sign occurs
because this operator is conjugate to the operator defined in Eq. (20).

For the contact force, we use Eqs. (16) and (18) to derive∫
D

d3x ′v · ρf =
∑
i, j

vi · mi j f j . (31)

Combining Eqs. (25), (29), and (31), Eq. (24) can be written

∑
i

vi ·

∑

j

mi j
dv j

dt
+
∑

p

∇pi · σpVp −
∑

j

mi j f j


= 0. (32)
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Since this equation holds for arbitrary vi , the term in brackets must be identically zero. This
is the grid momentum equation,

∑
j

mi j
dv j

dt
= −

∑
p

∇pi · σpVp +
∑

j

mi j f j . (33)

The particle stress is calculated by evaluating Eq. (2) for each mass point using Eq. (19),

dσp

dt
= T :

dep

dt
. (34)

3.3. Implicit (and Explicit) MPM

The complete implicit (and explicit) difference equations one uses to advance the solution
from t to t + �t are listed in this section. (For simplicity, we take �t to be constant, even
though it is not required by the analysis or in practice.)

A computational time step begins with the calculation of the natural coordinates of each
particle. These coordinates are calculated from Eq. (15).

x0
p =

∑
j

x0
j s
(
ξ 0

p − ξ 0
j

)
, (35)

where the superscript 0 refers to the data at the beginning of any computation cycle, and 1
at the end.

Next, one computes the grid velocity, v0
i , from the particle data.

∑
j

m0
i j v

0
j =

∑
p

m pv0
ps
(
ξ 0

i − ξ 0
p

)
. (36)

Usually, a lumped mass matrix, mi , is substituted for mi j ,

mi =
∑

j

mi j . (37)

This introduces dissipation so that k1 − k0 < K 1 − K 0, but eliminates the need to invert a
mass matrix [35].

The implicit form of the rate of strain, particle volume, stress evolution, and momentum
equations is

e1
p − e0

p = 1

2

∑
i

[∇pi vθ
i + ∇pi vθT

i

]
�t, (38)

V 1
p − V 0

p = −V 0
p

∑
i

[∇pi · vθ
i

]
�t, (39)

σ 1
p − σ 0

p = T :
(
e1

p − e0
p

)
, (40)

mi
v1

i − v0
i

�t
= −

∑
p

∇pi · (σ θ
p V θ

p

)+ mi f θ
i , (41)

where fi is the value of the specific force of constraint at vertex i , and 1
2 ≤ θ ≤ 1.
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Finally, one updates the particle positions and velocities from the grid solution,

x1
p − x0

p =
∑

i

vθ
i s
(
ξ 0

i − ξ 0
p

)
�t, (42)

v1
p − v0

p =
∑

i

(
v1

i − v0
i

)
s
(
ξ 0

i − ξ 0
p

)
. (43)

An implicit solution requires that Eqs. (38) through (41) be solved self-consistently.
One can compare the implicit θ scheme above with the explicit leapfrog scheme used

in previous versions of the MPM granular flow model [38]. Corresponding to the implicit
continuity equation, Eq. (39), the explicit continuity equation is

V 1/2
p − V −1/2

p = −V −1/2
p

∑
i

[∇pi · v0
i

]
�t. (44)

Corresponding to the implicit stress, Eq. (40), the explicit leapfrog stress equation is

σ 1/2 − σ−1/2 = T :
(
e1/2 − e−1/2

)
, (45)

where, corresponding to Eq. (38), the explicit equation for the strain increment is

e1/2 − e−1/2 = 1

2
(∇v0 + ∇v0T )�t. (46)

Finally, corresponding to the implicit momentum equation, Eq. (41), the explicit momentum
equation is

mi
v1

i − v0
i

�t
= −

∑
p

∇pi · (σ 1/2
p V 1/2

p

)+ mi f 0
i . (47)

3.4. The Contact Force

Points of contact between grains are detected by comparing the grain and center of mass
velocities. Since vgi �= vi only when more than one grain contributes to the center of mass
velocity at a grid node, every point where this condition holds is a contact point where two
grains overlap. The outward-directed normal to the grain’s surface is given by the gradient
of the density,

ng = −∇ρg. (48)

(Even though the density may vary in the interior of a grain, interior normals cannot be
contact points, so density is a suitable characteristic function.)

At points of contact, the constraint which prevents interpenetration, Eq. (8), is replaced
by

n̂g · (ṽφ
g − ṽφ

)≤ 0, (49)

where φ = 1 for the leapfrog scheme, φ = θ for the implicit scheme, and ṽg is the solution
to Eq. (47) or (41) with f = 0. One notes that vφ , the center-of-mass velocity at (n + φ)�t ,
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does not depend on fg because of momentum conservation, Eq. (11). That is,

vφ
i = ṽφ

i =
∑

g mgi ṽ
φ
gi∑

g mgi
. (50)

When Eq. (49) is not satisfied, the specific contact force fi in Eq. (47) for the leapfrog
scheme, or Eq. (41) for the implicit scheme, is calculated by requiring equality in Eq. (49),
with the result

n̂g · fgφ�t = −n̂g · (ṽφ
g − ṽφ

)
. (51)

With Coulomb friction, the contact force becomes

fgφ�t = −(n̂g + µ′(n̂g × ω̂g))n̂g · (ṽφ
g − ṽφ

)
, (52)

where

ω̂g = n̂g × (ṽφ
g − ṽφ

)
∣∣n̂g × (ṽφ

g − ṽφ
)∣∣ , (53)

and

µ′ = ming

[
µ,

∣∣ω̂g × (ṽφ
g − ṽφ

)∣∣∣∣ω̂g · (ṽφ
g − ṽφ

)∣∣
]
, (54)

as described in [38].
The contact force is volume weighted at points of contact, with weight,

V f i =
∑

p Vps(ξi − ξp)

Vi
, (55)

where Vi is the grid volume at node i , and contributions from all grains are included in the
sum over material points. The volume fraction at node i , V f i , is equal to 1 in the interior of
a grain, and 0 outside unless two grains overlap. At contact points, V f i varies in proportion
to the degree of overlap. As grains separate by a full cell, V f i decreases to 0. As two grains
approach, V f i increases through 1 as mass points defining the edge of the grain touch, at
which point each grain contributes 1/2 to the weight. When material points interpenetrate,
the volume fraction increases to more than 1 causing the grains to repel one another. Volume
weighting results in a first-order accurate interaction force [47]. However, it also results
in a smaller effective grain size with the same distribution of material points as with the
previous version of the contact force without volume weighting [38].

4. THE STABILITY OF IMPLICIT AND EXPLICIT TIME DIFFERENCE

APPROXIMATIONS FOR THE GRANULAR FLOW MODEL

The linear and nonlinear stability properties of the implicit MPM equations are examined
and compared with the explicit leapfrog MPM equations. The principal results are that
standard linear stability analysis shows that implicit differencing in time eliminates the
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usual Courant stability limit, but that both explicit and implicit MPM are linearly unstable
to the finite grid instability, even for �t = 0. Nonlinear stability analysis shows that implicit
MPM is stable in the L2 norm, but that explicit MPM is not. In this analysis, the kinetic and
strain energies are the appropriate choice for the L2 norm.

A well-known method that is stable in the L2 norm for �t = 0 is the marker-and-cell
(MAC) scheme for the solution of the incompressible flow equations method with space-
centered, forward-time differencing of convection terms. Lilly shows that MAC is mass,
momentum, and kinetic energy conserving when �t = 0, and that instabilities caused by
aliasing will not occur in quadratic conserving schemes such as MAC [20]. He also notes
that mass, momentum, and energy conservation is exact with �t > 0 if one uses second-
order implicit time differencing (θ = 1/2). (For other references and a general discussion
of conservation in staggered mesh schemes, see [27].)

4.1. Neumann Stability

Standard Neumann analysis of the linearized equations (in 1D) gives the stability prop-
erties of the leapfrog and implicit θ schemes. Assuming plane wave solutions of the form
u(x, t) = ∑

k,ω uk,ωei(kx−ωt), where k is the wave number and ω the frequency, the disper-
sion equation for the leapfrog scheme is given by

sin

(
ω�t

2

)
= (±ks�t), (56)

where

��t

2
= sin

(
ω�t

2

)
(57)

and s =
√

T
ρ0

is the shear wave speed. When ks�t ≥ 1, a complex conjugate pair of roots
is found, one of which has a negative imaginary part yielding an exponentially growing or
unstable mode. For smaller values of �t , both roots are real and the leapfrog algorithm is
stable.

The corresponding dispersion relation for the θ scheme is

� = ±ks

(
1 − i

(
θ − 1

2

)
��t

2

)
, (58)

where

��t

2
= tan

(
ω�t

2

)
. (59)

When θ = 1
2 , in which case the differencing is second-order accurate, the solutions are

always real and bounded by the Nyquist frequency,

−π

�t
≤ ω ≤ π

�t
. (60)

For θ > 1/2, the imaginary part of � is always negative,

Im[�] = −(θ − 1
2

)
ks(

1 + (θ − 1
2

)2
k2s2

) , (61)
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and the solutions are therefore damped. Thus, the implicit differencing is unconditionally
stable, and dissipative for θ > 1

2 .

4.2. Finite Grid Instability

A PIC calculation typically has many more degrees of freedom than a finite-difference
calculation with the same number of grid points, because there are usually several mass
points in every cell. In MPM, for example, where every particle has its unique velocity,
the grid velocity is restricted to a linear variation between grid points. Consequently, the
particle and grid kinetic energies may be very different, even though their momenta are
identical.

As is well known, modulations of the particle density which have the same amplitudes
at grid points cannot be distinguished when the interactions among particles on the grid are
calculated.

Let us consider a simple problem in one dimension. A beam of particles with uniform
spacing moves with uniform speed U0 in the x direction. The y velocity component is
perturbed, resulting in a perturbed stress, and a shear wave propagating in the x direction.
The implicit in time, Lagrangean equations of motion are

σ 1
p − σ 0

p

�t
+ λ

∑
j

∂s(x j − x)

∂x

∣∣∣∣
x=x p

v
1/2
j = 0 (62)

ρ0

[
v1 − v0

�t

]
+
∑

p

∂s(x − x p)

∂x

∣∣∣∣
x=x j

σ 1/2
p = 0. (63)

Substitute a plane wave solution as above in the laboratory frame,

−i(� − kqU0)σ (kq) + λikqs(kq)v(kq) = 0 (64)

−i(� − kqU0)ρ0v(kq) +
∑

r

ikrσ(kr )s(kr ) = 0, (65)

where kq(kr ) is the sum of a principal wave number and its qth (r th) harmonic and � is
given by Eq. (59),

kq = k + q

(
2π

�x

)
, − π

�x
≤ k ≤ π

�x
. (66)

A linear dispersion relation is derived by eliminating v in the equations above,

σ(kq)[� − kqU0]2 + kqλs(kq)
∑

r

krσ(kr )s(kr ) = 0. (67)

Multiply this equation by ikqs(kq), and sum over q to derive

1 − λ

ρ0

∑
q

k2
qs2(kq)

[� − kqU0]2
= 0. (68)

This is exactly the same form derived for FLIP in [34] and yields complex roots with
exponentially growing modes. The finite-grid instability will occur at all wave numbers in the
principal interval for values of U0/

√
λ
ρ0

< 0.4 (when s is a linear b-spline).
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Although the only dependence on �t in Eq. (68) is contained in �, and that acts only
to shift the resonances, it is noted in [34, p. 491] that, “Even with relatively low-order
interpolation, the ringing instability appears not to grow with implicit differencing in time.”
However, more than implicit time differencing seems to be required for complete suppres-
sion of the finite-grid instability. For example, the instability is absent in implicit plasma
simulations only over a range of time steps [5]. In the next section, we examine energy
conservation with the MPM granular flow model, in preparation for a nonlinear stability
analysis in the following section.

4.3. Energy Conservation

Energy conservation is not only an important measure of the quality of the solution of a
numerical calculation, but also of its stability. In PIC plasma simulations, for example, there
is a strong identification of nonphysical heating with the finite grid instability [9, p. 176].
In this section, we derive expressions for the kinetic and strain energies, as well as closed
form expressions for the various dissipation terms.

The total energy, E , is the sum of the kinetic energy,

K =
∫

D

1

2
ρv2 dV (69)

and strain energies,

S =
∫

D

1

2
e : T : e dV . (70)

The tangent modulus has symmetry properties such that the strain energy is quadratic in
the strain [33].

For the implicit θ scheme, we derive an energy integral directly from the equations of
motion. (There will be contributions from boundary terms, for example, if the boundary
strain or stress is imposed, but we will neglect these and assume energy should be a constant
of the motion.) The change in kinetic energy per time step (for both the particle and grid
kinetic energies) is given by

K 1 − K 0 = k1 − k0 = 1

2

∫
D1

ρ1(v1)2 dV − 1

2

∫
D0

ρ0(v0)2 dV . (71)

(As noted in Section 3.2, the changes in the particle and grid kinetic energies are equal;
k1 − k0 = K 1 − K 0.) From the volume evolution equation, Eq. (39), the domain growth is

∫
D0

∇ · vθ�t dV =
∫

D1
dV −

∫
D0

dV, (72)

which allows one to write

k1 − k0 = 1

2

∫
D0

ρ0((v1)2 − (v0)2) dV . (73)

One then substitutes the MPM momentum equation, Eq. (41), for the term in brackets in
Eq. (32), with the result,
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E1 − E0 = 0 =
∑

i

v
1
2
i ·
∑

j

mi j
(
v1

j − v0
j

)+
∑

i

vθ
i ·
[∑

p

∇pi · σ θ
p Vp −

∑
j

mi j f j

]
�t

+
∑
i, j

(
θ − 1

2

)(
v1

i − v0
i

) · mi j
(
v1

j − v0
j

)
. (74)

The last term on the RHS is the error that results from substituting vθ for v1/2 in the second
term. The first term on the RHS is the change in kinetic energy, k1 − k0.

The second term is the work done by material stress. The strain energy increment is
calculated by inverting the order of summation;

S1 − S0 =
∑

p

σ θ
p :
∑

i

∇pi vθ
i �t. (75)

S contains a positive strain energy and a second error term, which we now show. Denoting
S for each particle by ∫ , one finds

∫ 1

−
∫ 0

= (θe1 + (1 − θ)e0) : T : (e1 − e0), (76)

where the subscript p is understood. The total strain is obtained by integrating the strain
increments from t = 0 to t = n�t ,

∫ n

−
∫ 0

=
n∑

l=1

1

2
(el +el−1) : T : (el −el−1)+

(
θ − 1

2

) n∑
l=1

(el −el−1) : T : (el −el−1). (77)

The second term on the RHS is an error that decreases the strain energy density each time
step. The first term telescopes to give the particle strain energy,

sn − s0 = 1

2

∑
p

en
p : T : en

p, (78)

assuming ep(t = 0) = 0.
We now consider the contribution of work done by the contact force to Eq. (32). First,

consider the normal component of the contact force. The work done by this component is∑
g,i, j

vθ
gi · n̂gn̂g · mgi j fg jθ�t =

∑
g,i, j

[(
vθ

g − ṽθ
)+ ṽθ

]
i · n̂gn̂g · mgi j fg jθ�t = 0. (79)

The work done by the normal component of the contact force is zero as a consequence of
Eqs. (11) and (51).

The frictional term acts in the direction of the unit tangent vector,

n̂g × ω̂g = t̂g t̂g · (ṽθ
g − ṽθ

)∣∣ṽθ
g − ṽθ

∣∣ . (80)

The work done by the frictional contact force each time step is

F =
∑
g,i, j

vθ
g · t̂g t̂g · mgi j fg jθ�t = −

∑
g,i, j

mgi jµ
′vθ

g j · t̂g t̂g · (ṽθ
g j − ṽθ

j

)
. (81)
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The effective friction coefficient is calculated so that the velocity does not reverse sign
under the action of friction, (vθ

g · t̂g)(ṽθ
g · t̂g) ≥ 0. As above, adding and subtracting ṽθ and

using Eq. (9), one finds the work done by frictional contact to be dissipative,

F = −
∑
g,i, j

µ′(vθ
gi − ṽθ

i

) · t̂g t̂g · mgi j
(
ṽθ

g j − ṽθ
j

) ≤ 0. (82)

The work done by friction, above, and by plastic deformation is not recoverable. Thus,
the contribution of plasticity to the total energy must be dissipative on physical grounds and
the numerical solutions must reproduce this. Differencing Eq. (6), yields the contribution
from plasticity, P , which is given by

P = −
∑

p

σ n+θ−1
p :

(
en

p,pl − en−1
p,pl

)
Vp = −

∑
p

(
λn

p − λn−1
p

)σ n+θ−1
p : σ n+θ−1

p∣∣σ n+θ−1
p

∣∣ Vp ≤ 0 (83)

and is dissipative since λ is monotone increasing.
Viscoelastic materials can be analyzed similarly, and one finds that the viscosity con-

tributes a dissipative term to the total energy equation.
The lumped mass matrix introduces a decrement in kinetic energy each time step, L,

given by

L = 1

2

∑
p

m p

[(
vn

p − vn−1
p

)2−
∑

i

s(ξi − ξp)
(
vn

i − vn−1
i

)2

]
, (84)

which is negative definite [35]. Including contributions from friction, plasticity, and the
interpolation error due to lumping the mass matrix, the total energy, E = k + s, decreases
each time step by an amount given by

En = En−1 −
(

θ − 1

2

)∑
p

[
m p
(
vn

p − vn−1
p

)2

+ (en
p − en−1

p

)
: T :

(
en

p − en−1
p

)]+ F + P + L (85)

for θ ≥ 1
2 . Of course, exact energy conservation could be achieved in the usual way by storing

an internal energy, to which all dissipation terms would be added in each computation step
as heat sources. (Note also that the total energy is unchanged through the second phase of
each time step, since it is calculated from particle data.)

4.4. Stability Analysis Using the Energy Method

The energy method “requires that one devise a norm for the solution vector which one
can then show increases by a factor no greater than 1 + O(�t) at each time step. This
implies stability in this norm and the argument is then usually rounded off by demonstrating
the equivalence of the norm to the L2 norm. The reason for the name is that in certain
fairly simple cases the physical energy of the system provides such a norm” [31, p. 132].
(A general review of the stability of difference methods is given by Thomée [14].)

The energy method for the stability of finite difference equations is described in Chapter 6
of Richtmyer and Morton [31, pp. 131–151]. The authors comment that energy analysis
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will “in general obtain a sufficient condition for stability. . . .Thus, to some extent the
method is complementary to normal mode analysis which tends to yield necessary stability
conditions.” [31, p. 133]. (For example, a time step half the Courant limit is sufficient for
stability, but unnecessary.) In the case of linear, isotropic elasticity, the energy of the system
provides an appropriate norm. In this section we use energy stability analysis on the MPM
equations to show that the implicit θ scheme is stable in the L2 norm.

As is well known, the leapfrog algorithm conserves energy to high order in �t . Mazur
argues that leapfrog conservation is even better than commonly believed, because much of
the apparent error is due to the interpolation one uses to construct an energy from variables
that are defined at different time levels [30]. That is, if one wishes to compute En or En+1/2,
one must interpolate either the velocity or the strain between time levels. With sufficiently
high-order interpolation, the leapfrog algorithm can be shown to conserve energy in general
to at least O(�t3). However, even though total energy is conserved to high order, the leapfrog
algorithm cannot be shown to be stable in the L2 norm. Consider, for example, leapfrog
solutions of the simple harmonic oscillator problem, for which the the energy integrals are
either

En = 1

2

[
m(vn)2 + Kxn− 1

2 · xn+ 1
2
]

(86)

or

En+ 1
2 = 1

2

[
mvn · vn+1 + Kxn+ 1

2 · xn+ 1
2
]
. (87)

These energies are each constant for all n and equal to each other. However, even though
this energy is a constant of the motion, neither the kinetic nor the strain energy is bounded.
For example, in a time oscillatory solution with angular frequency ω = π/�t , the solution
alternates in sign on successive time steps. For this mode, the inner product of the strain
in Eq. (86), and the velocity in Eq. (87), can be negative. Thus, neither the kinetic energy
in Eq. (86) nor the strain energy in Eq. (87) is bounded by the initial total energy. (Of
course, negative energies will not occur in this simple case unless

√
K
m �t is comparable to

π . However, there is substantial evidence from fluid dynamics calculations [28] and plasma
simulations [9] using leapfrog time advancement that more complex systems do develop
high frequency noise, especially as �t approaches the explicit stability limit. As noted
earlier, energy growth is a signature of the finite-grid instability in plasma simulations.
Implicit plasma simulations are not as hospitable to the accumulation of energy in high
frequency modes and hence are much less prone to the finite-grid instability even though
energy is not strictly conserved [5].)

Numerical tests seem to confirm that leapfrog solutions are not bounded in the L2 norm.
A catastrophic, nonlinear instability is observed with the leapfrog algorithm, which seems
to occur more frequently when the solution oscillates about zero [11]. The instability is
attributed to aliasing error, which tends to accumulate energy at the shortest scales.

With the implicit θ scheme, one can make strong statements about the L2 norm of the
solution using the results of Section 4.3.

Both the kinetic, Eq. (28), and strain energies, Eq. (78), are positive or zero at every time
step n,

kn, sn ≥ 0. (88)
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The total energy at step n is bounded by the total energy at step 0,

En ≤ E0. (89)

(In fact, for θ > 1
2 and with the lumped mass matrix, the total energy decreases each time

step by an amount given by Eq. (85). Therefore, the kinetic and strain energies are both
bounded by E0,

kn, sn ≤ E0, (90)

and the implicit θ scheme is stable in the L2 norm independent of the time step.)

5. A FULLY IMPLICIT ALGORITHM USING THE NEWTON–KRYLOV TECHNIQUE

The matrix-free Newton–Krylov method [51] and [52] is becoming an increasingly pop-
ular tool to solve fully coupled transient and steady-state problems. It has been applied
successfully to a wide range of applications such as combustion [54], phase change [53],
and plasma physics [59], among others.

In this study, an inexact, matrix-free, Newton–Krylov technique is used to solve the
fully implicit, nonlinear equations of motion for granular flows with intergranular contact.
This implicit integration algorithm is in contrast to that of Benson [12], who implemented an
implicit Eulerian formulation based on mixture theory by solving a quasi-Newton problem.
It is also in contrast to the work of Guilkey and Weiss [55], who solved a linearized implicit
form of the MPM equations (with intergranular contact neglected) by inverting a stiffness
matrix.

The nonlinear system of equations is represented by the vector

F(v) = [Fx (v), Fy(v)]. (91)

Here Fx represents a concatenation of all x residual lists associated with each grain gε[1, N ],

Fx = [F1
x , . . . , F g

x , . . . , F N
x

]
, (92)

where N is the number of grains. For a given grain g, its residual list F g
x contains x

component residuals at all nodes i belonging to g, iε[1, Ng],

F g
x = [F g

x1
, . . . , F g

xi
, . . . , F g

xN g

]
, (93)

where Ng is the number of nodes belonging to grain g. Similarly for the y component
residuals,

Fy = [F1
y , . . . , F g

y , . . . , F N
y

]
, (94)

where

F g
y = [F g

y1
, . . . , F g

yi
, . . . , F g

yNg

]
. (95)

All residual components F g
xi

and F g
yi

are dimensionally identical.
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Typically, one uses the NK method to find a single-valued vector field. In our application,
a multivalued velocity field is required since relative motion between the grains must be
simulated. When grains come into close contact, a node i can be shared between more than
one grain. Therefore, there will be more than one velocity field associated with i . Without
a contact force, the grains would be decoupled and the NK technique could conceivably
be applied to individual grains. However, the contact force couples the grains, and one
must solve for a full multivalued velocity field in the NK technique. The nonlinear residual
vector F must therefore contain the residuals for nodes i belonging to each grain g, for all
grains.

The solution of the fully coupled, nonlinear problem is a concatenated velocity field vk+1,
which satisfies

‖F(vk+1)‖2

Fscale
< tol, (96)

where tol is a chosen tolerance, which in this paper is consistently 10−6, and Fscale is a
scaling factor that is problem dependent. Using Newton’s method, the roots of this equation
are calculated by solving the following linear system

Jkδvk = −F(vk), (97)

vk+1 = vk + δvk, (98)

where Jk is the Jacobian matrix whose element (i, j) is

J k
i, j = ∂ Fi

∂vk
j

. (99)

In the nonlinear granular flow equation set, the frictional component of the contact model
and the plastic constitutive model are both governed by nonlinear functions (see Section 2);
in addition the plastic constitutive model is also nonanalytic [8]. The Jacobian matrix for
this system will therefore be difficult to invert. One of the primary advantages of employing
the matrix-free NK technique to granular flows is that the Jacobian does not need to be
formed (hence the term “matrix-free”). This occurs because a pertinent choice of the linear
solver used in Eq. (97) requires the Jacobian only in the form of a matrix–vector product.
One such solver is the generalized minimal residual (GMRES) algorithm [56]. GMRES
constructs the solution of Eq. (97) from a basis of Krylov vectors (r0, Jr0, . . . , Jl−1r0),

where the number of GMRES iterations is l and r0 is the initial linear residual,

r0 = −F(vk) − Jkδv0, (100)

constructed from an initial guess δv0. The matrix–vector product we use is the following
second-order approximation to Eq. (99),

Jkr = F(vk + εr) − F(vk)

ε
. (101)

The choice of perturbation parameter ε is heuristic and affects convergence considerably.
An ε too large produces an inaccurate approximation to the local gradient, particularly if
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the residual has variations on a scale smaller than ε. However, an ε too small results in local
numerical noise severely depleting the accuracy of the local gradient calculation. In this
study,

ε = 0.001 × 1

N
‖r‖2

∑
|vk | (102)

is consistently employed.
At each Newton step, the linear problem is solved only to a tolerance that is proportional

to the current nonlinear residual,

Jkδv < −γ Fk, (103)

hence the term “inexact.” This tolerance is employed so that time is not spent needlessly
solving the linear problem when the local gradient is far away from the root of the nonlinear
residual. For this study

γ = 0.001. (104)

6. THE NONLINEAR RESIDUAL FUNCTION

For a given grain, the θ -centered nonlinear residual at node i is

Fk
i = mn

i

(
vn+θ,k

i − vn,k
i

θ�t

)
−
[∑

p

∇pi · (σ n+θ,k
p V n+θ,k

p

)+ mn
i f n+θ,k

i

]
(105)

at the kth Newton iteration. For notational convenience, the grain subscript g has been
suppressed and the following scaling

Fscale = Vchar

∑
p

m p (106)

is employed, where Vchar is the characteristic velocity of the system.
The residual is mass weighted to prevent stiff behavior in the residual. Specifically, not

mass weighting the residual results in a division by the mass of the internal force term.
At grain edges, the nodal mass can be orders of magnitude smaller than in the interior.
The small mass occurs when a material point moves into a new element at a grain edge
(the shape function used to interpolate particle masses tends to zero as the interpolating
distance approaches the element width). The corresponding internal force calculation at
these nodes will not, however, tend to zero as the gradient shape function is piecewise
constant throughout the element [8]. The internal force and nodal mass do not scale here. A
small change in internal force (due to small velocity changes) will result in large changes
in the residual at the nodes in question, if the residual is not mass weighted.

The disparity in scale between the vertex mass and internal force term can result in a
matrix system that is not diagonally dominant for large time steps. In these cases, the linear
problem is poorly conditioned and the linear iteration converges slowly. To prevent this poor
conditioning, a FLIP [35] implementation of the internal force term was also constructed. In
this implementation, cell-centered velocity gradients are calculated by applying a second-
order gradient function to nodal velocities. The cell-centered gradients are quadratically
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interpolated to particles. The constitutive stress model is applied to produce particle stresses
which are then quadratically interpolated back to cell centers. The nodal internal force is
then calculated by applying the second-order gradient function to cell-centered stresses.
The higher order interpolation in the internal force calculation is found to provide better
conditioning in the implicit algorithm (for the single rebounding grain problem in Section 8.3
the total number of linear iterations was halved) and more robust results for the explicit
algorithm. The stencil is broader, however, and produces errors in shearing near the grain
edges. Therefore the MPM implementation is consistently used in this work.

7. PRECONDITIONING

The overall efficiency of a Newton–Krylov solver is highly dependent on the choice
of preconditioner used in the solution of the linear system. A preconditioner is indeed
almost mandatory in a Newton–Krylov implementation. In most NK applications in the
literature, an approximate matrix is constructed and either incomplete LU (ILU) factoriza-
tions [54] or smoothing techniques such as weighted Jacobi (WJ) or symmetric successive
overrelaxation (SSOR) used in the preconditioner [57]. In these cases, the Newton–Krylov
implementation is not strictly “matrix-free” as a matrix that approximates the Jacobian is
constructed and inverted. Recently, the emphasis has been on the use of multilevel precondi-
tioners, for which the number of iterations is only weakly dependent on the number of grid
points [58].

In this study, the linear system is right preconditioned so that the system to be solved is

JkM−1(Mδvk) = −F(vk). (107)

The solution is formed from the following basis of l Krylov vectors

δvk ≈
q=l∑
q=0

βqM−1
q Vq , (108)

where Vq = qth Krylov vector = (JkM−1
q )Vq−1,

JkM−1
q Vq = F

(
vk + εM−1

q Vq
)− F(vk)

ε
. (109)

To evaluate the preconditioned Krylov vector,

yq ≈ M−1
q Vq , (110)

a multilevel preconditioner that uses a matrix-free operator on each level is implemented. On
a given level, the matrix-free operator is constructed by employing the second-order matrix–
vector product given in Eq. (101) in conjunction with a fixed number of weighted Jacobi
iterations. This means that the implementation is truly matrix-free and a knowledge of the
Newton residual at the given level is the only requirement to implement the preconditioner
operator. To employ the preconditioner operator on coarse levels, coarse particles and
coarse shape functions are recursively constructed. The coarse shape functions are identical
in shape to those on the fine level but have compact support that scales with the coarse



526 CUMMINS AND BRACKBILL

level mesh size. Coarser level shape functions can be formulated by extending the compact
support to scale with the new coarse level mesh size.

A coarse particle is constructed using the following rules:

1. It occupies one fine level cell only and its position in that cell is the center-of-mass
position of the fine level particles.

2. Its mass is the sum of the fine level particle masses in that cell. (Therefore the total
mass is an invariant for each level.)

3. Its volume is the sum of the fine level particle volumes in that cell.
4. Its velocity is the center-of-mass velocity of the fine level particle velocities. (Therefore

total momentum is an invariant for each level.)
5. Its stress tensor is the volume-weighted stress tensors of the fine level particles in that

cell.

Coarser level particles can then be recursively constructed by considering the previous
level’s particles. Figure 1 displays a schematic of the construction of coarse level particles
from the previous finer level particles. Figure 2 shows the particle positions and vertex
mass contours produced for a single grain on a 32 × 32 mesh with four levels used in the
preconditioner. In particular, one will note that the support of the vertex mass expands as
the levels coarsen, due to the increased size of support of the shape functions.

These constructs are then used to evaluate a Newton residual at all levels—in the same
way as on the finest level. In this way, the process of calculating the preconditioner operator
is identical for all levels, the only difference being the particles and shape functions used in
this calculation. In the following sections, the WJ preconditioner operator and the multilevel
algorithm will be outlined further.

FIG. 1. Schematic showing how the coarse level particle and grid structure are generated from the fine level.
The dark dots and dark lines indicate the coarse level particles and grid structure. The open dots and dashed lines
indicate the fine level particles and grid structure.
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FIG. 2. 32 × 32 rebounding elastic grain simulation with multilevel preconditioner. This figure shows the
particle positions and vertex mass contours at t = 0.5 for four levels in the multilevel preconditioner. The levels
range from a 32 × 32 grid structure to a 4 × 4 grid structure.
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7.1. Weighted Jacobi Operator

To solve the system approximately,

y ≈ M−1V, (111)

the following WJ smoother is employed

ys = ys−1 + w

D
(V − Mys−1), (112)

where w = 0.67, s is the smoothing iteration, D is the diagonal vector of the matrix M, and
the following matrix-free approximation

My = F̃(vk + ε(y)) − F̃(vk)

ε
(113)

is used. In this study two sweeps of the WJ operator are employed on a given level.
For the purpose of efficiency, we assume the Fabre-averaged velocity is constant through-

out the preconditioning operation. This is a reasonable assumption given that it is a mass
weighting of the surrounding grain velocities. A large change in a grain’s velocity would
typically be associated with a small mass and thus, the effect of this change on the
Fabre-averaged velocity is lessened since it is weighted by the small mass. The advan-
tage of this assumption is that the internal force and contact force can be calculated in one
pass of the grid rather than two. A simplified form of the Newton residual, (F̃ in Eq. (113)),
is therefore employed in the calculation of M,

F̃
(
vn+θ,k

i

) = mn
i

(
vn+θ,k

i − vn,k
i

θ�t

)
−
[∑

p

∇pi · (σ n+θ,k
p V n+θ,k

p

)+ mn
i f̃

n+θ,k
i

]
, (114)

where f̃ denotes the contact force with a constant Fabre-averaged velocity throughout the
preconditioner.

In order to retain the matrix-free approximation, each element in the diagonal is effec-
tively calculated by passing in a unit vector into Eq. (113). Thus element a in diagonal
D is

Da = Mea, (115)

where ea is the zero vector with a unit entry at element a. For a two-dimensional system with
n nodes, this operation requires 2n Newton residual calculations (for two dimensions, D has
two components, [Dx , Dy], per node and thus is a vector of length 2n). For large systems, this
approach quickly becomes prohibitive. Instead, the work required in the diagonal calculation
is reduced by recognizing the sparsity of M due to the compact nature of the MPM equations
in the calculation of F̃. The domain of influence of a node (i, j) used in the calculation of a
two-dimensional MPM Newton residual totals nine cells. To calculate one of the diagonal
components, say Dx at node (i, j), one then only has to pass in an input vector that zeroes Dy

at node (i, j) and Dx and Dy at the surrounding eight nodes. The diagonal D can therefore
be calculated using 18 rather than 2n calls to the matrix-free approximation.
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7.2. Multilevel Treatment

In this study, a defect-correction V-cycle multilevel preconditioner [60] is investigated to
evaluate the preconditioned Krylov vector

yq ≈ M−1
q Vq . (116)

On each grid a coarse approximation to the system in Eq. (111) is solved using two sweeps of
WJ. For all levels, the matrix-free approximation is retained. On the downward component
of the V-cycle, the error in this solution is restricted to the next coarse level (which then
becomes the source term for the system on the next level). On the upward component of
the V-cycle, the error is prolonged to a finer level and added to the existing solution. The
restriction operator employs mass-weighted quadratic interpolation while the prolongation
operator uses bilinear interpolation. The implementation of the V-cycle is standard. The
error on a coarse grid l (l > 1) is

El ≈ sl − Ml
qyl , (117)

where sl is the source term (the restricted error from the previous finer level) and yl is the
solution on grid level l after two WJ sweeps and

Ml
qyl = F̃l

(
vn

l + εyl
)− F̃l

(
vn

l

)
ε

, (118)

where F̃l refers to the Newton residual calculated on grid l. This calculation uses the
constructed particles and shape functions associated with grid l. The nodal velocities at
grid level l, vn

l are calculated from grid l particle velocities using the shape functions
associated with l. As velocities at coarse grids are not updated during the Newton iteration,
the matrix-free approximation invokes a perturbation from velocity vn

l instead of vk
l .

7.3. Multilevel Results

The multilevel preconditioner is tested on the single impacting grain calculation discussed
in Section 8.3. The simulation is run to a time t = 0.5, enough time to allow for one impact
with the wall. Simulations were run on a 16 × 16 mesh, a 32 × 32 mesh, and a 64 × 64 mesh.
The results for the 64 × 64 mesh are shown in Table I and are representative of the behavior
for the other two resolutions. Table I provides the required total Newton iterations, total
linear iterations, and average linear iterations per Newton iteration for preconditioners with
varying levels.

For all meshes, the single-level preconditioner makes an obvious difference. Without
a preconditioner, the average number of linear iterations per Newton iteration is 10. This
occurs because for these results, a maximum number of 10 linear iterations per Newton
iteration is allowed. (That is, a maximum of 10 Krylov vectors is permitted in the GMRES
solver. If linear convergence is not achieved, solution of the linear problem ceases and a
new Newton residual is calculated; see Section 8.2). Thus, without the preconditioner, the
linear problem is never solved to within the specified tolerance. Employing a single-level
preconditioner results in this average reducing to ≈4. In addition, the number of Newton
iterations decreases for all three resolutions.
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TABLE I

Multilevel WJ Preconditioner Statistics for the Single Grain Simulation

on a 64 × 64 Grid

Levels Newton iterations Linear iterations Linear its./Newton it.

No preconditioner 4249 42490 10.00
1 Level 1724 6727 3.900
2 Levels 1711 4590 2.683
3 Levels 1695 4587 2.706
4 Levels 1717 4596 2.677
5 Levels 1691 4442 2.627
6 Levels 1696 4452 2.625

Note. The simulation runs to a time t = 0.50.

For multilevel preconditioners, the results are somewhat disappointing. For all meshes,
little improvement is seen for preconditioners with more than two levels. One of the problems
with the use of a multilevel preconditioner in this context is that the representation of the
contact force is self-similar with mesh spacing. Therefore as the mesh coarsens the distance
over which the contact force act increases (it scales with the mesh size) and hence the
proportion of the grain under contact increases. Indeed for a coarse enough grid (i.e.,
1 × 1 grid), the single grain will always be in contact with the boundaries. This suggests
that the character of the matrix is different at different levels (i.e., it may incorporate the
contact function at a particular coarse level but not at finer levels) and therefore the error
added back to finer levels is misrepresentative.

While use of the multilevel preconditioner is not disastrous (indeed the number of linear
iterations per Newton iteration is limited and nearly mesh independent, as reported in [58]),
it has currently not provided a positive contribution given the overhead associated with use
of the multilevels.

8. RESULTS

8.1. Time Step Restriction

For the implicit calculations, the time step is governed by a limitation on the maximum
strain incurred in a time step. The idea behind the constraint is to ensure that an undisturbed
stress state will not evolve to a plastic yielded state in one time step and therefore to ensure
the stress is close to the yield surface immediately before the onset of plasticity. For all
calculations, the time step is limited such that the maximum strain is <1%,

�timp <
0.01(
de
dt

)
max

, (119)

where (
de

dt

)
max

=
√

1

4
[∇v + ∇vT ] : [∇v + ∇vT ]. (120)

For the plastic granular materials in this paper, a strain of 1% will result in a stress increment
of ≈0.25 × σy , where σy is the plastic yield stress. While this strain restriction is relevant
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only to plastic materials, we apply it to simulations of purely elastic materials as well. For
materials with different yield properties the maximum strain limit will need to alter.

For the explicit calculations, the Courant stability restriction is applied to the time step
to ensure linear stability (see Section 4). The maximum propagation wave speed is

s =
√

λ + 4/3µ

ρ
(121)

and therefore the explicit time step is restricted to

�texp <
α�x

s
. (122)

A conservative CFL stability limit of α = 0.25 gives better energy conservation with the
explicit leapfrog method (which conserves total energy to at least O(�t3)). Hence for the
explicit calculations,

�texp < min

(
0.01(
de
dt

)
max

,
α�x

s

)
. (123)

8.2. Exiting a Newton–Krylov Iteration

The linear systems solved in this study become poorly conditioned for time steps �t >

10 × �texp. The use of the preconditioner aids in the efficiency of the solution for �t <

10 × �texp but does not increase the radius of convergence. The reason for this is currently
unclear. To cater to these situations, a maximum number of Krylov vectors in the GMRES
solver is specified. If linear convergence is not achieved after k iterations (that is, with a
solution containing k Krylov basis vectors), the GMRES iteration ceases and the resulting
Newton residual is calculated.

If convergence of the nonlinear problem has not been achieved after a maximum number
of Newton iterations, the time step is halved and the Newton–Krylov iteration started again.

8.3. Single Elastic Grain

The problem of an elastic, impacting grain is examined using the implicit and explicit
MPM formulations. Table II provides the physical properties of the grain and the simulation
properties. The physical properties are chosen so that the grain is representative of the
material high melting explosive (HMX) used in plastic bonded explosives (PBX). The
difference here is that the grain behaves elastically and hence is assumed to have an infinite
yield stress. Table III provides the specifications of the implicit formulation of the problem.
Figure 3 shows the initial physical configuration.

Figure 4 reveals the grain positions for the implicit formulation. Figure 5 shows the final
grain position using the explicit formulation with a CFL stability limit of α = 0.25 and
α = 1.0, respectively. The results show that as the simulation evolves, the edges of the grain
separate from the main body. The grain spallation is more catastrophic when the CFL limit
is increased to α = 1.0. Spallation is completely absent in the implicit results, corresponding
to an apparent absence of the finite-grid instability with an implicit formulation. In addition,
the energetics of contact are accurately computed because the internal forces are evaluated
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TABLE II

Specifications of the Single Elastic Grain Problem

Resolution 17 × 17

�x 8.118 × 10−6 m
�y 8.118 × 10−6 m
Maximum particles per cell 4
Simulation time 2.00
�tMAX 2.5 × �texp

Bulk modulus λ 11.36 × 109 Pa
Shear modulus µ 7.48 × 109 Pa
Density ρ 1.9 × 103 kg/m3

Uo −1.0 × 102 m/s
Vo 0.0 m/s

TABLE III

Specifications for the Implicit Simulation of the

Single Elastic Grain Problem

Newton tolerance 10−6

ε 10−3

γ 10−3

Fscale Uo ×
∑N p

p
m p

Maximum Newton iterations 20
Maximum linear iterations 5
Preconditioner None
θ 0.5

0

0

Xmax = 1.38x10
−4

Ymax = 1.38x10
−4

m
m

Xc = 0.73x10−4m
Yc = 0.73x10−4m
R = 0.50x10−4m
U  = −1.00x102 m/s

(Xmax,Ymax)

(0,0)

U
R

(Xc,Yc)

FIG. 3. Schematic showing the initial configuration of the rebounding elastic grain problem.
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FIG. 4. Grain positions in the elastic rebounding grain problem using the implicit MPM formulation.

FIG. 5. Grain positions at time t = 2.00 in the elastic rebounding grain problem using the explicit MPM
formulation with a CFL stability limit of α = 0.25 and α = 1.00.
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using an estimate of the time-averaged velocity (averaged over the integration period).
The contact force responds to this internal force which will then alter the estimate of the
time-averaged velocity. The process continues until the solution relaxes to an equilibrium
between the internal force, the contact force, and the time-averaged acceleration (i.e., the
solution converges to F = 0).

In contrast, the explicit formulation calculates internal forces based only on the velocity
at the start of the time step. This velocity can significantly alter during the integration period,
causing the internal force estimate to be inaccurate during the integration period. There is
no guarantee of a balance between forces and the time-averaged acceleration. The problem
is magnified further where grains cross cell boundaries. In these cases the mass is small
here, and large accelerations result during the time step. Using the velocity at the start of
the time step is clearly in error.

Plots of total energy, elastic energy, and momentum transfer for both implicit and explicit
cases are presented in Fig. 6. For the explicit leapfrog, the total energy grows by an order
of magnitude. The primary contributor to the total energy growth in the explicit case is the
elastic energy, as shown in Fig. 6. This energy accumulates significantly for the explicit
case, after each wall contact and even during simple advection. An inelastic deformation
is occurring after each wall contact and residual stresses remain. The effect of the inelastic
collision is seen in the explicit momentum plot in Fig. 6, which shows a spurious increase
in momentum after each interaction. The energy growth during the simple advection stage
is likely due to the finite-grid instability, which is not suppressed by the explicit leapfrog
algorithm. The explicit leapfrog algorithm is not strictly energy conserving; it conserves
energy to 0(�t3), and it is not stable in the L2 norm, as shown in Section 4.4. Instabilities
will be suppressed only to truncation error and thus, can persist.

In contrast to the explicit leapfrog scheme, the total energy grows to a maximum variation
of ≈7% in the implicit scheme. Energy conservation is closely approximated, in keeping
with the analysis in Sections 4.4 and 4.3. The finite-grid instability, observed in the explicit
case, does not exist in the implicit formulation (using θ = 1

2 ) due to the strict constraint
of total energy conservation. (Instabilities will be suppressed to round off error rather
than truncation error). In [34] it is speculated that large time steps compared with the
CFL limit are required to dampen the instability growth. This appears to be incorrect.
Our calculations with the stability time step constraint in Eq. (123) with α = 0.25 and
α = 0.10 are stable and energy conserving and show that a large time step is unnecessary for
stability.

A small amount of elastic energy accumulates after each wall contact for the implicit
scheme. The accumulation is, however, approximately two orders of magnitude less than that
seen in the explicit case. Reducing the Newton tolerance in the nonlinear solution reduces
this growth in elastic energy. The implicit momentum plot reveals an overall dissipation in
kinetic energy which is due to the spatial error wrought in transferring information between
grid and particles using a lumped mass matrix (see Section 3.3).

To gauge the accuracy of the impact time, the explicit and implicit results were compared
for the problem of an impacting rectangular block (there is no analytical solution for the
propagation speed of elastic waves in an impacting circular grain). The effective propagation
speeds s (see Eq. (121)) were measured and compared to analytical results for the impacting
rectangular block. After the first wall interaction a 3% error was incurred for both implicit
and explicit formulations. Thereafter the momentum results were of a character similar to
those shown in Fig. 6.
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FIG. 6. Total energy, elastic energy, and x-momentum comparisons for the implicit and explicit formulations
for the rebounding elastic grain problem.

8.4. Compressed Grains

The second problem examined is the dynamic loading of an assembly of grains. The
motivation behind the simulation of this problem comes from the experimental work of
Rossmanith and Shukla [49]. Here, investigations of dynamic wave propagation in granular
media were undertaken in order to study impact wave propagation and load transfer in gran-
ular materials. Detonators were used to dynamically load the disks and photoelasticity was
employed to visualize the stress distribution. The grains were fabricated from a photoelastic
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TABLE IV

Specifications of the Compressed Grain Problem

Resolution 36 × 176

�x 3.125 × 10−4 m
�y 3.125 × 10−4 m
Maximum particles per cell 4
Simulation time 60.00
�tMAX 10.0 × �texp

Bulk modulus λ 4.786 × 109 Pa
Shear modulus µ 2.893 × 109 Pa
Density ρ 1.9 × 103 kg/m3

Uo 0.0
Vo −1.00 × 101 m/s
Loading time 0.12 µs

material, which when subjected to a state of stress, produced optical interference fringes.
These fringes are contours of the difference in principal stresses.

Recently, Bardenhagen et al. [50] employed the explicit MPM formulation to simulate
the stress wave propagation through an assembly of disks. The results were compared
to photoelastic experiments like those in [49] but where a Hopkinson bar, rather than a
detonator, was employed as the dynamic loading mechanism. This allowed for a more
easily applied boundary condition (a velocity step function) rather than a variable forcing.
The explicit MPM formulation was found to reproduce the character of the stress wave
propagation closely although some calibration was required due to the uncertainty of the
experimental material properties.

In this example, an assembly of five disks is dynamically loaded using a velocity step
function. The purpose of this example is to highlight the extended range of applicability and
robustness of the implicit formulation over the explicit formulation due to the suppression
of the finite-grid instability. Table IV provides the specifications of the problem and Table V
provides the specifications of the implicit formulation of the problem. Figure 7 shows the
initial physical configuration. The disks are separated from the left and right boundaries by
a distance of 2�x .

TABLE V

Specifications for the Implicit Simulation of the

Compressed Grain Problem

Newton tolerance 10−6

ε 10−3

γ 10−3

Fscale Vo × ∑N p

p
m p

Maximum Newton iterations 5
Maximum linear iterations 10
Preconditioner WJ
Levels 1
Relaxation sweeps 2
θ 0.5
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FIG. 7. Schematic showing the initial configuration of the grain compression problem.

The shear and bulk moduli in Table IV were chosen such that they produced the same
Pwave and Swave speeds reported in [49] for a density ρ = 1.9 × 103 kg/m3. The Pwave speed is

Pwave =
√

λ + 4/3µ

ρ
= 2.133 × 103 m/s (124)

and the Swave speed is

Swave =
√

µ/ρ = 1.234 × 103 m/s. (125)

Hence λ and µ can be calculated. The loading time was chosen so that it corresponded to
the same fractional component of the simulation time as in [49].

Figures 8 and 9 display the contours of the fringe patterns of the in-plane principal stress
differences. Fringes are generated by taking the cosine of the difference in in-plane principal
stress,

Fr = cos

(
2π × fno(σ1 − σ2)

max(σ1 − σ2)

)
. (126)

The explicit and implicit calculations display similar average propagation speeds, with
the P-wave speed ≈2.5 × 103 m/s. However, as the explicit calculation proceeds, the fringe
patterns are dominated by high frequency noise; this is a further example of the finite-grid
instability discussed in Section 8.3. The total energy grows as seen in Fig. 10. In contrast, the
implicit formulation does not exhibit this high frequency noise and total energy is conserved
to within 1%. (The total energy dissipation seen in this figure occurs during the transfer of
information from the particles to the grid.)
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FIG. 8. Fringe plots of the principal stress differences for the compressed grain problem using the implicit
MPM formulation.
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FIG. 9. Fringe plots of the principal stress differences for the compressed grain problem using the explicit
MPM formulation. The CFL stability limit is α = 0.25.
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FIG. 10.Total energy comparisons for the compressed grain simulation for the implicit and explicit MPMformulation.

8.5. Monodisperse Shearing
Our

final example is the continuous shear of a hexagonally packed monodisperse sam-

ple. The problem was studied in [37] where the effect of grain size distribution, material

properties, and friction were examined. The motivation behind this problem is the accurate

numerical simulation of plastic bonded explosives. In [37], the explicit MPM algorithm

employed a contact force without volume weighting. Here both explicit and fully implicit

MPM use a volume-weighted contact force (see Section 3.4). The results are different,

because the effective size of the grains is smaller with a volume-weighted contact function,

and the density of the grains falls just below the critical density. Of particular interest are

differences in the explicit and implicit results for the shear wave propagation speed, the

formation of stress chains, and energy conservation.
The shear cell calculation is an ideal illustration of the advantages of the matrix-free

approximation in the implicit scheme. The constitutive equation is elastic-plastic and the
contact algorithm incorporates Coulomb friction. The material constants chosen model the
crystal HMX. Table VI provides the specifications of the problem and Table VII provides

TABLE VI

Specifications of the Monodispersed Grain

Shearing Problem

Resolution 156×150

�x8.118×10

−

6

m�y8.118×10

−

6

mMaximum particles per cell 4Simulation time 40.00�t

M

A

X

10.0×�t

e

x

p

Bulk modulus

λ1.136×10

8

PaShear modulusµ7.48×10

9

Pa
Densityρ1.9×10

3

kg/m

3

V

1.00×10

2

m/sYield stressσ

y

3×10

8

Pa
Hardening modulusH1×10

7

Pa
ν

0.3



IMPLICIT MATERIAL-POINT METHOD 541

TABLE VII

Specifications for the Implicit Simulation of the

Monodispersed Grain Shearing Problem

Newton tolerance 10−6

ε 10−3

γ 10−3

Fscale V ×
∑N p

p
m p

Maximum Newton iterations 5
Maximum linear iterations 5
Preconditioner WJ
Levels 1
Relaxation sweeps 2
θ 0.5

the specifications of the implicit formulation of the problem. Figure 11 shows the initial
physical configuration. Shear is simulated by attaching grains to the left and right boundary
and the right boundary is moved with speed V . Periodic boundary conditions are imposed
on the top and bottom boundaries. The simulation is run to a time (t = 40.0 µs) such that
the average shear strain exceeds 300%.

Figures 12 and 13 display the grain positions and the principal stress differences for
the implicit and explicit cases at various times. Light shading in the principal stress plots
indicates larger values of principal stress differences and hence the existence of stress chains.
Comparing the explicit calculations with those in [37] reveals the disorder propagates more
slowly using the volume-weighted contact force. By time t = 40 µs (which corresponds to
an average shear strain of 330%), approximately one third of the structure is still regular
near the center. Without the volume weighting, the overall packing order is lost by time
t = 35 µs (which corresponds to an average shear strain of 284%). The volume-weighted
contact force allows a denser row packing before the onset of row buckling. Therefore the
disorder from the left takes longer to initiate and propagate through to the center. As noted
in [37], as the disorder propagates toward the center, the force chain density reduces and a
small number of primary load paths result.

(Xmax,Ymax)

V

(0,0)

R

Xmax = 1.27x10
−3

m

V = 1.00x10

−3

m/s
−2

Ymax = 1.22x10

R = 3.26x10

−3
m

m

370 grains; hexagonal packing

FIG. 11. Schematic showing the initial configuration of the monodisperse shearing problem.
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FIG. 12. Particle positions and principal stress differences in the monodisperse shearing problem using the
implicit MPM formulation.
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FIG. 13. Particle positions and principal stress differences in the monodisperse shearing problem using the
explicit MPM formulation.



544 CUMMINS AND BRACKBILL

In the implicit results, the disorder propagates even more slowly than the explicit calcu-
lation, particularly from the left boundary. It is postulated that the more rapid development
of disorder seen in the explicit calculations is a result of the lack of energy conservation
associated with the explicit leapfrog algorithm. The results of the rebounding elastic grain
in Section 8.3 revealed spurious elastic energy, residual stresses, and momentum production
after each wall collision for the explicit calculation. Strict energy conservation imposed by
the implicit algorithm prevents these spurious productions, and a longer time is required to
reach a similarly disordered state.

Plots of total energy and elastic energy for both the implicit and explicit simulations
are shown in Fig. 14. As with the rebounding grain problem, the total energy grows by
two orders of magnitude more for the explicit calculation than the implicit calculation.
Elastic energy is the primary contributor to the energy growth in the explicit simulation. It
continually grows indicating the existence of spurious residual grain stresses after collisions.
The energy dissipated by plasticity ensures the explicit calculation remains robust without
grain spallation. In the implicit calculation, the elastic energy does not grow monotonically
but oscillates as grains collide and rebound. The main contribution to the total energy is
kinetic energy.

FIG.14.Totalenergyandelasticenergycomparisonsfortheimplicitandexplicitformulationsforthe

monodisperseshearingproblem.
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FIG. 15. Statistics of the principal stress differences for the implicit and explicit MPM formulations for the
monodisperse shearing problem.

The existence of residual stresses in the explicit simulation is verified in the histogram
plot in Fig. 15. This plot reveals the fractional area within which the computed principal
stress difference lies within a small interval. Data is taken from times t > 10.0 µs after which
the initial order is disrupted. The histogram shows that the explicit algorithm consistently
produces more grains with principal stress differences >30 MPa. As a result, the mean
principal stress difference is nearly twice that produced from the implicit calculation. As
noted in [37], the explicit distribution is exponential for principal stress differences larger
than the mean. The implicit distribution deviates from an exponential distribution at small
values of the stress, most likely because grains on the left are not yet strained, as a steady
state has not been reached yet. Both distributions are bounded by �σ≤ 2/

√
3σy = 346 MPa.

9. CONCLUSIONS

A fully implicit formulation of MPM has been developed and implemented using a
matrix-free Newton–Krylov algorithm. The algorithm is ideally suited to the nonlinear and
nonanalytic characteristics of MPM that result from grain plasticity and intergranular contact
and will easily accommodate improved physics, such as grain fracture and intergranular
binding.

An important result of this work is the elimination of the finite grid instability by the
implicit formulation, and a demonstration of the importance of stability in the L2 norm.
Rigorous energy conservation results in a more robust and physical method, which gives high
quality results for a wider range of strain rates than before. Limits on the time step, which
prevent values of strain that result in the yield stress for real materials being exceeded,
impose constraints on the maximum time step that can be used. However, the implicit
algorithm with time steps that exceed the Courant stability limit yields more accuracy than
can be achieved with the explicit algorithm. This occurs even when the explicit scheme uses
time steps much smaller than the Courant limit.

Computational results show that simple diagonal preconditioners converge as rapidly as
more complex multigrid preconditioners for time steps where convergence is reliable. One
explanation for this may be that the class of preconditioners considered so far fail to expand
the region of convergence of the nonlinear, Newton iteration. This places a high value on
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efficient implementation with the present preconditioner and provides strong incentives for
the development of more effective preconditioners in the future.
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